A 3.0-kg mass sliding on a frictionless surface has a velocity of 5.0 m/s east when it undergoes a one-dimensional inelastic collision with a 2.0-kg mass that has an initial velocity of 2.0 m/s west. After the collision the 3.0-kg mass has a velocity of 1.0 m/s east. How much kinetic energy does the two-mass system lose during the collision?

A 3.0-kg mass sliding on a frictionless surface has a velocity of 5.0 m/s east when it undergoes a one-dimensional inelastic collision with a 2.0-kg...

A 10-g bullet moving horizontally with a speed of 2.0 km/s strikes and passes through a 4.0-kg block moving with a speed of 4.2 m/s in the opposite direction on a horizontal frictionless surface. If the block is brought to rest by the collision, what is the kinetic energy of the bullet as it emerges from the block?

A 10-g bullet moving horizontally with a speed of 2.0 km/s strikes and passes through a 4.0-kg block moving with a speed of 4.2 m/s in the opposite...

A 1.6-kg block is attached to the end of a 2.0-m string to form a pendulum. The pendulum is released from rest when the string is horizontal. At the lowest point of its swing when it is moving horizontally, the block is hit by a 10-g bullet moving horizontally in the opposite direction. The bullet remains in the block and causes the block to come to rest at the low point of its swing. What was the magnitude of the bullet's velocity just before hitting the block?

A 1.6-kg block is attached to the end of a 2.0-m string to form a pendulum. The pendulum is released from rest when the string is horizontal. At the...

Two blocks with masses 2.0 kg and 3.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 3.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?

Two blocks with masses 2.0 kg and 3.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between...

A 3.0-kg mass sliding on a frictionless surface explodes into three 1.0-kg masses. After the explosion the velocities of the three masses are: (1) 9.0 m/s, north; (2) 4.0 m/s, 30° south of west; and (3) 4.0 m/s, 30° south of east. What was the magnitude of the original velocity of the 3.0-kg mass?

A 3.0-kg mass sliding on a frictionless surface explodes into three 1.0-kg masses. After the explosion the velocities of the three masses are: (1) 9.0...

A rocket with an initial mass of 1000 kg adjusts its thrust by varying the rate at which mass is ejected. The ejection speed relative to the rocket is 40 km/s. If the acceleration of the rocket is to have a magnitude of 20 m/s2 at an instant when its mass is 80% of the original mass, at what rate is mass being ejected at that instant? Ignore any external forces on the rocket.

A rocket with an initial mass of 1000 kg adjusts its thrust by varying the rate at which mass is ejected. The ejection speed relative to the rocket...

A large spring is used to stop the cars after they come down the last hill of a roller coaster. The cars start at rest at the top of the hill and are caught by a mechanism at the instant their velocities at the bottom are zero. Compare the compression of the spring, xA, for a fully loaded car with that, xB, for a lightly loaded car when mA = 2mB.

A large spring is used to stop the cars after they come down the last hill of a roller coaster. The cars start at rest at the top of the hill and are...

A 25-kg block on a horizontal surface is attached to a light spring (force constant = 8.0 kN/m). The block is pulled 10 cm to the right from its equilibrium position and released from rest. When the block has moved 2.0 cm toward its equilibrium position, its kinetic energy is 12 J. How much work is done by the frictional force on the block as it moves the 2.0 cm?

A 25-kg block on a horizontal surface is attached to a light spring (force constant = 8.0 kN/m). The block is pulled 10 cm to the right from its equilibrium...

A 0.40-kg particle moves under the influence of a single conservative force. At point A where the particle has a speed of 10 m/s, the potential energy associated with the conservative force is +40 J. As the particle moves from A to B, the force does +25 J of work on the particle. What is the value of the potential energy at point B?

A 0.40-kg particle moves under the influence of a single conservative force. At point A where the particle has a speed of 10 m/s, the potential energy...

A 2.0-kg block sliding on a rough horizontal surface is attached to one end of a horizontal spring (k = 250 N/m) which has its other end fixed. The block passes through the equilibrium position with a speed of 2.6 m/s and first comes to rest at a displacement of 0.20 m from equilibrium. What is the coefficient of kinetic friction between the block and the horizontal surface?

A 2.0-kg block sliding on a rough horizontal surface is attached to one end of a horizontal spring (k = 250 N/m) which has its other end fixed. The...

A block (mass = 4.0 kg) sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (k = 100 N/m) which has its other end fixed. If the maximum distance the block slides from the equilibrium position is equal to 20 cm, what is the speed of the block at an instant when it is a distance of 16 cm from the equilibrium position?

A block (mass = 4.0 kg) sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (k = 100 N/m) which has its other...

A 1.0-kg block is released from rest at the top of a frictionless incline that makes an angle of 37° with the horizontal. An unknown distance down the incline from the point of release, there is a spring with k = 200 N/m. It is observed that the mass is brought momentarily to rest after compressing the spring 0.20 m. How far does the mass slide from the point of release until it is brought momentarily to rest?

A 1.0-kg block is released from rest at the top of a frictionless incline that makes an angle of 37° with the horizontal. An unknown distance down the...

A spring (k = 600 N/m) is placed in a vertical position with its lower end supported by a horizontal surface. A 2.0-kg block that is initially 0.40 m above the upper end of the spring is dropped from rest onto the spring. What is the kinetic energy of the block at the instant it has fallen 0.50 m (compressing the spring 0.10 m)?

A spring (k = 600 N/m) is placed in a vertical position with its lower end supported by a horizontal surface. A 2.0-kg block that is initially 0.40...

A 1.5-kg block sliding on a rough horizontal surface is attached to one end of a horizontal spring (k = 200 N/m) which has its other end fixed. If this system is displaced 20 cm horizontally from the equilibrium position and released from rest, the block first reaches the equilibrium position with a speed of 2.0 m/s. What is the coefficient of kinetic friction between the block and the horizontal surface on which it slides?

A 1.5-kg block sliding on a rough horizontal surface is attached to one end of a horizontal spring (k = 200 N/m) which has its other end fixed. If this...

A 1.2-kg mass is projected from ground level with a velocity of 30 m/s at some unknown angle above the horizontal. A short time after being projected, the mass barely clears a 16-m tall fence. Disregard air resistance and assume the ground is level. What is the kinetic energy of the mass as it clears the fence?

A 1.2-kg mass is projected from ground level with a velocity of 30 m/s at some unknown angle above the horizontal. A short time after being projected,...

A spring (k = 600 N/m) is at the bottom of a frictionless plane that makes an angle of 30° with the horizontal. The upper end of the spring is depressed 0.10 m, and a 2.0-kg block is placed against the depressed spring. The system is then released from rest. What is the kinetic energy of the block at the instant it has traveled 0.10 m and the spring has returned to its uncompressed length?

A spring (k = 600 N/m) is at the bottom of a frictionless plane that makes an angle of 30° with the horizontal. The upper end of the spring is depressed...